TECHNICAL REPORT 2:

Thermal Load Calculation and Energy Analysis

Michael Morder Mechanical Option Advisor: Dr. William Bahnfleth INOVA South Patient Tower Falls Church, VA October 19, 2011

Table of Contents

Executive Summary	2
Introduction	3
Part 1: Design Load Estimation	6
Part 2: Energy and Operating Costs	
Summary	
Appendix A: Trane TRACE Templates	

List of Tables

Table 1: Weather Conditions	7
Table 2: Assumed Lighting & Misc. Loads	8
Table 3: Basis of Design Values by Space Type	8
Table 4: Summary of Thermostat Settings	9
Table 5: Construction U-Values	9
Table 6: Wall Height	10
Table 7: System Ventilation Comparison	11
Table 8: Cooling SF/Ton Comparison	12
Table 9: Equipment Cost Summary	13
Table 10: Emission Factors for Virginia	17

List of Figures

-igure 1: Breakdown of Typical Zoning per Floor	. 10
-igure 2: Energy Consumption Summary	. 12
-igure 3: Monthly Utility Costs	.13
-igure 4: Electric Monthly Energy Cost by Equipment	.14
-igure 5: Monthly Cooling Equipment Consumption	.15
-igure 6: Monthly Cooling Tower Consumption	. 17
-igure 7: Monthly HVAC Energy	.17

Executive Summary

This report is a compilation of input data, assumptions and results that pertain to an energy model performed on the INOVA South Patient Tower. To perform the energy model, Trane TRACE 700 modeling software was utilized. After inputting the geometry of the building, the rooms were placed into zones corresponding to the interior core and exterior exposures to accurately model the different exterior loads.

When the modeling of systems and plants was completed, the model was run, it was determined that the design cooling load is 732 tons and the design heating capacity is 4,645 MBh. This works out to roughly 275.8 ft²/ton of cooling capacity. The ventilation was determined to be lower than the designer's specifications for the building system and reasons for this are discussed later in this report.

Upon doing an energy consumption analysis, it was found that a majority of the energy use in the South Patient Tower comes from the cooling equipment and process. This accounts for 45% while heating and lighting both account for 22%. The remaining percentage can be attributed to the mechanical equipment operation in the building. It should be noted that while miscellaneous equipment was entered into the model, it was taken as part of the cooling load and is included in that percentage. Finally, an emissions report was compiled for the buildings carbon footprint from both onsite combustion as well as the off-site electric production measures for the state of Virginia. The following sections will explain in further detail the methods in which the analysis was performed as well as more detailed results.

Introduction

Building Information

The South Patient Tower is located on the INOVA Fairfax Hospital campus in Falls Church, Virginia. The tower is a 236,000 SF, thirteen (13) story (12 above grade and 1 below) hospital patient bed tower that expands the existing hospital patient building. The project was contracted under a single prime with negotiated lump-sum contract valued around \$76 million overall project cost and delivered via a design-bid-build method.

Project Team

Owner:	INOVA Health System
Architect:	Wilmot/Sanz Inc.
General Contractor:	Turner Construction Company
Structural Engineer:	Cagley & Associates
Mechanical Engineer:	RMF Engineering, Inc.
Electrical Engineer:	RMF Engineering, Inc.
Civil Engineer:	Dewberry & Davis

Architecture

The South Patient Tower was designed to complement and respect the recent Heart Institute to the building's west, while maintaining an architectural style that is consistent with the rest of the INOVA Fairfax Hospital Campus. The building can be broken into two distinctive architectural parts; the lower four floors (podium) and the upper nine floors (tower). The podium section of the building hosts the entrance lobby, cafeteria, kitchen, services, offices and ultrasound exam rooms while the tower is strictly for patient bedrooms. A two floored atrium is used for the entrance lobby and has a circular fountain located on the ground level. The mechanical systems are located on the fifth floor due to a trauma helicopter pad located on the roof of the tower.

Building Façade

The façade of the tower is made up of a curtain wall system. This curtain wall consists of three elements that help to respect the existing patient bed tower while mirroring the newer Heart Institute's façade style. Precast concrete panels, aluminum curtain wall with glazing and metal panels all work together to create this building's façade. There are two varieties of precast concrete panels. One is a panel formed into thin brick laid in soldier courses and help to tie the building into the older all brick patient tower, and the other is a basic precast panel in the center of each elevation and on the façade of the podium level. The aluminum curtain wall with glazing helps to provide ample amounts of daylight for the interior patient rooms and other interior spaces. Metal panels are used to continue to look of the building but help to hide some of the interior elements such as columns or the mechanical fifth floor.

Zoning

The INOVA South Patient Tower is located in Fairfax County, Virginia and falls under the *I*, *Merrifield Suburban Center, Land Unit M, Sub-Unit M1* planning area and district. Innovative energy efficiency and conservation strategies should be incorporated into all new buildings in this district. A setback of 100 feet on the western boundary of the district and a maximum height of 165 feet are requirements within Sub-Unit M1.

Roofing

The roofing for the South Patient Tower consists of a similar base of a 9-1/2" reinforced concrete slab, insulation, and a 4" light-weight concrete topping for the three types of roofing materials on the project. These materials include; polyvinyl-chloride (PVC), a fluid-applied protected membrane, and a vegetated roof system. The lower podium roof consists of both the vegetated roof system and the fluid-applied protected membrane, while the higher tower roof is made of the polyvinyl-chloride (PVC) material.

Sustainability

The INOVA Hospital South Patient Tower is pursuing LEED Silver certification which exceeds the zoning requirement to be LEED Certified. This project has an energy reduction goal of at least 24.5% based on a database of similar buildings. Some aspects to help the project reach this goal include a vegetated green roof covering most of the low podium roof, a white reflective PVC roofing material on the upper tower roofs, water efficient landscaping using no potable water, automatic sensors on sinks and dual flush valves on toilets, recycled and local materials and community connectivity by building a new bus stop for the hospital

Mechanical Systems Overview

The INOVA hospital campus has its own existing central utility plant and campus loop for steam and chilled water. The chilled water enters the basement of the tower through two 24" lines and goes directly to the fifth floor mechanical room and low podium roof to serve the air-handling units. The fifth floor mechanical room houses the tower's main air handling equipment and building's return and exhaust fans. The return is combined in a return air plenum and supplied back to the various airhandlers for mixing with outdoor air. A majority of the tower is served from four (4) 50,000 CFM air handlers coupled together that feed into various risers that serve upper and lower floors. The kitchen is served from two (2) air handlers on the western roof of the second floor. These air handlers are 10,000 CFM and 13,000 CFM respectively. The 10,000 CFM air-handler provides make-up air for the exhaust hoods located in the kitchen and the 13,000 CFM air-handler serving the ventilation and supply air for the space. Heating is provided by three (3) steam to heating hot water heat exchangers located in the basement of the tower. These heat exchangers are sized for 715 gallons per minute and provide hot water directly to three (3) 715 GPM pumps that each provide 60 feet of head to serve the air handler heating coils. The distribution throughout the building will be served by constant air volume (CAV) units with the boxes that serve the perimeter patient rooms equipped with hot water reheat coils.

Part 1: Design Load Estimation

Assumptions

Energy Simulation Model

The energy analyses presented in this report are results of running the building model in Trane TRACE 700 software. In order to better analysis the building as a whole, a number of assumptions were made for the various room types. Most of the occupancy and airflow data was pulled directly from the original basis of design, while lighting was pulled from ASHRAE Fundamentals 2009 and miscellaneous loads were estimated from prior hospital design experience.

Design Conditions

The INOVA South Patient Tower is located in Falls Church, VA. To estimate the weather data, values were taken from ASHRAE Fundamentals 2009 for Washington, D.C. Reagan Airport. A brief summary of the data inputs for the TRACE weather data can be seen below in *Table 1*. For more detailed weather input information refer to *Appendix A*.

Table 1: Weather Conditions			
Washington, D.C. Reagan Airport			
Latitude 38.87N			
Longitude 77.03W			
Heating DB (99.6%) 16.3 F			
Cooling DB (0.4%) 94.3 F			

Internal Loads

Templates were created for each of the various space types. Internal load assumptions were taken from the basis of design and typical lighting levels noted in ASHRAE Standard 90.1-2007 were used for the space. Miscellaneous loads were estimated from types of equipment that would be in the space. Computers and coffee makers were assumed to have 350 W of miscellaneous load a piece and all other loads were assumed on a typical W/SF basis. A summary of the lighting and miscellaneous loads can be seen in *Table 2*, while the typical occupancy for a space can be seen in *Table 3*.

Table 2: Assumed Lighting and Miscellaneous Loads

Template Name	LPD (W/SF)	Misc. (W/SF)
Active Storage	0.9	0
Corridor	1.0	0
Lobby	1.3	0
Electrical/Mechanical	1.5	1.5
Inactive Storage	0.3	0
Hospital Lounge	0.8	350 W (Coffee)
Office	1.1	350 W (CPU)
Restroom	0.9	0
Kitchen	1.2	5.0
Café	2.1	0
Locker Room	0.6	0
Patient Room	0.7	3.0
Nurses' Station	1.0	700 W (CPU x2)
Conference Room	1.3	1.0
Exam/Treatment	1.5	3.0

Airflows

Assumptions for airflows to the various spaces were determined from the designer's original basis of design and typical ASHRAE Standard 170 air change rates for hospital spaces. The infiltration was selected as a pressurized, average construction of 0.3 air changes per hour for patient and exam rooms, and a neutral, average construction of 0.6 air changes per hour for all other spaces. A summary of the typical values used can be seen in Table 3 below. For detailed information on individual airflow templates, refer to Appendix B.

Table 3: Basis of Design Values by Space Type			
Minimum Ventilation Rates			
	Design	Default Values	
Program Occupancy	Outdoor Air RateSpace Outdoor Air RateCFM/personCFM/SF		Occupancy Density No./1000 SF
Patient Rooms	25	0.25	10
Conference/Meeting	5	0.06	50
Corridors	-	0.06	-
Storage Rooms	-	0.12	-
Reception Areas	5	0.06	30
Main Entry Lobbies	5	0.06	10

. .

Thermostat

The values for the thermostat templates were taken from the designer's basis of design documentation and do not vary throughout the hospital. The thermostats are located in the room and the drift points were not specified, rather assumed for this template. Table 4 below summarizes the set points for heating and cooling for the South Patient Tower.

Tuble 4. Summary of mermostat Settings			
South Patient Tower Temperature Set Points			
Cooling Dry Bulb	72 F		
Heating Dry Bulb 72 F			
Relative Humidity 50 %			
Cooling Drift Point 81 F			
Heating Drift Point 64 F			

Table 4: Summary of Thermostat Settings

Construction

The construction information for this template was taken directly from design documents for the South Patient Tower. *Table 5* below summarizes the U-values for the various elements of construction. The windows and curtain walls were assumed to be the same, as they were specified by the designer to be very close in U-value and shading coefficients. Also seen below, *Table 6* shows the wall heights for the South Patient Tower. It consists of eleven and a half (11.5) foot floor-to-floor height with a three (3) foot plenum, giving a typical ceiling height throughout of eight and a half (8.5) feet.

Table	5:	Construction	U-values
-------	----	--------------	----------

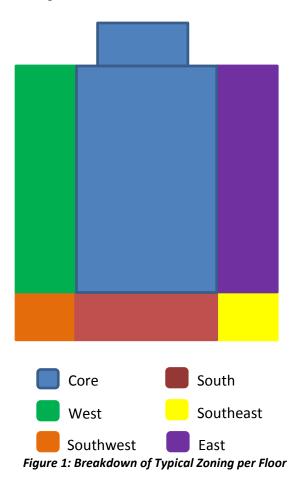

South Patient Tower Construction Values			
Element	U-Value (BTU/hr-ft ² -F)		
Slab	Slab 8" HW Concrete		
Roof 6" LW Concrete, 6" Ins.		0.024	
Wall	Steel Framed Wall, 3" Ins.	0.043	
Window	Low-e Double Pane (SC = 0.36)	0.29	

Table 6: Wall Height

Wall Heights			
Walls 11.5 ft			
Floor-to-Floor 8.5 ft			
Plenum 3 ft			

Model Zone Breakdown

In order to accurately model the effects of the solar path and exterior conditions on the building loads, zones were created with a typical pattern on every floor. The building is oriented directly with the cardinal directions, and the zone names follow the direction for naming purposes. All the exterior rooms on the upper floors were patient rooms while on the lower floors; these exterior spaces were primarily entrance lobby and shell space for the future addition to the East. The zones were also grouped in a way that similar space types were accounted for in that zone, examples being the patient rooms being grouped together. Special zones were created for the rooms on the Southwest and Southeast corners since they have windows on two exterior walls and would see a different gain. For basic zoning breakdowns see *Figure 1* below.

Systems

The systems in the South Patient Tower consist of multiple air handlers ducted together to create one (1) supply system for the hospital as a whole. A separate air-handler supplies the kitchen and food preparation area. Information for both of these systems was taken from design documents and created in TRACE. The zones were then placed under the appropriate system for the analysis.

Trane TRACE Results Analysis

The designers did not perform a software based load analysis for this building. All loads were calculated by hand without the use of a program using guidelines suggested in ASHRAE Load Calculation methods. The following presents a comparison of the designers hand calculation and TRACE model results.

Supply Air and Ventilation Comparison

The ventilation rate provided in the documentation was 184,553 cubic feet per minute with 40% outdoor air and a CFM/SF value of 0.95. The TRACE model results in a lower total supply and ventilation rate, but a higher outdoor air percentage. Due to the weather data being the same as what the designer specified in their basis of design, and ventilation being from this documentation also, this can be attributed to inaccurate internal load assumptions in the miscellaneous loads. *Table 7* below shows a comparison of the design air-handler and the results of the TRACE model analysis.

	Design Values	TRACE Values	% Difference
Area (SF)	195,163	200,591	3 %
Total Supply (CFM)	184,553	119,995	-35 %
Outdoor Air (CFM)	73,741	52,778	-28 %
% Outdoor Air	40 %	44 %	10 %
CFM/SF	0.95	0.60	-37 %

Table 7: System Ventilation Comparison

Cooling Plant Comparison

Since there was no designer record of plant loads for this building, the results from the TRACE model have been compared to typical cooling load values from the ASHRAE Pocket Guide-2005 Cooling Load Check Figures table. Since the South Patient Tower is primarily patient rooms, the value for a Hospital Patient Room was used from this table. The range in the ASHRAE Pocket Guide-2005 is 275

SF/ton for the lowest to 165 SF/tons for the highest. Table 8 below shows the comparison between the model results and the typical values for this type of building.

Table 8: Cooling SF/ton Comparison								
ASHRAE TRACE %								
	Typical (Lo)	Value	Difference					
SF/ton	275	275.8	0.29					

The value is slightly higher than the lowest suggested value in the ASHRAE Pocket Guide-2005 but this can be partly attributed to inaccuracies in the miscellaneous loads on the spaces since the lighting and occupancy were taken directly from design documentation.

Part 2: Energy and Operating Costs

Energy Consumption Summary

After developing a Trane TRACE model to calculate the various loads on the South Patient Tower, the software was used to determine the buildings total energy consumption. The following section will breakdown the energy usage and associated costs that were determined through the analysis. Although the building is connected to a campus loop, the portion used from that plant was modeled for use in this consumption summary.

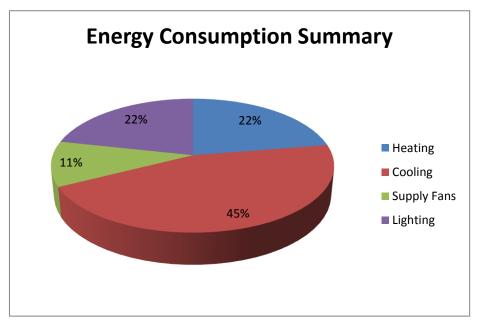


Figure 2: Energy Consumption Summary

Technical Report 2 Michael Morder

INOVA South Patient Tower Mechanical Option

As shown previously, *Figure 2* breaks down the various consumers of energy in the South Patient Tower. It can be seen that cooling dominates the energy consumption as there are many loads within the hospital that are operating continuously and create heat load. Lighting also seems higher than expected but since the building is under continuous operation, this percentage seems creditable. Further breakdowns can be seen in the following tables and figures. *Table 9* shows the Cost/SF of the equipment and includes the water consumption, while *Figure 3* shows the monthly utility costs from the analysis. The total Cost/SF for the building seems lower than it should be indicating the inaccurate miscellaneous equipment levels that were previously assumed.

	Energy Usage (kBTU/yr)	Cost (\$/yr)	Cost/SF (\$/SF)
Heating	2,347,473	\$ 10,623	\$ 0.05
Cooling	2,917,553	\$ 32,451	\$ 0.16
Lighting	2,255,491	\$ 21,661	\$ 0.11
Supply Fans	1,139,462	\$ 10,943	\$ 0.05
Heat Rejection	1,792,296	\$ 17,212	\$ 0.09
Other Clg	2,066	\$ 19.84	\$ 0.00
Totals	10,454,341	\$ 92,909	\$ 0.46

Table 9: Equipment Cost Summary (Includes Water Consumption)

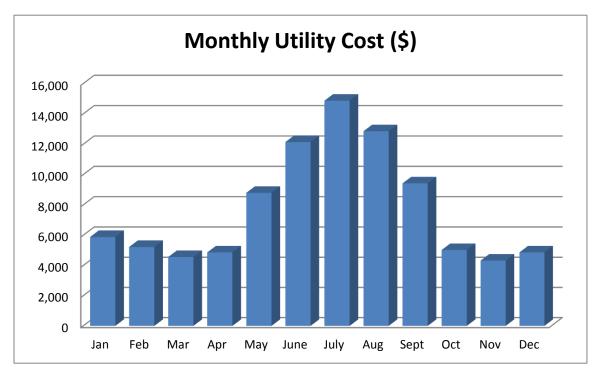


Figure 3: Monthly Utility Costs

An energy analysis was not performed by the designers of the South Patient Tower, thus this data could not be obtained. Energy modeling adds costs to a project and an overall model is expected to be completed when the addition Women's Clinic is added as part of the next phase of construction for LEED purposes. Also the owner was not willing to release utility data. Due to this there is no way to compare the monthly costs to the TRACE results, and the default utility rates were used. *Figure 4* shows the electric monthly cost by equipment. It follows suit that the cooling equipment is higher during the summer months and lower during the winter. It also can be seen that lighting is basically constant throughout the year. It seems as though the miscellaneous loads were placed as effect on the cooling load rather than energy from the templates so no values are shown in this graph.

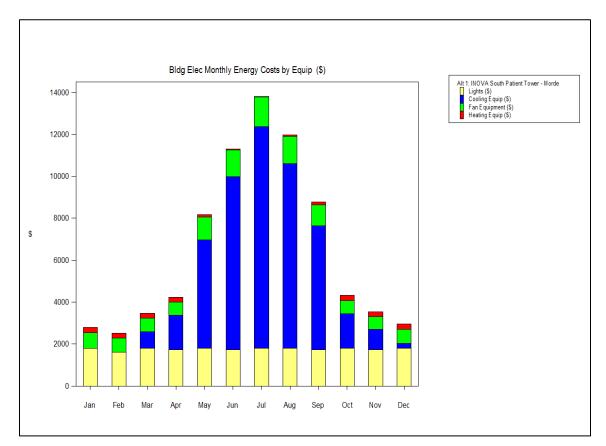


Figure 4: Electric Monthly Energy Cost by Equipment

Technical Report 2 Michael Morder

The monthly cooling equipment consumption, cooling tower consumption and monthly HVAC energy were also investigated from this energy cost analysis. *Figure 5* shows the monthly cooling equipment consumption dominating the summer months and non-existent in the dead of winter. This seems unlikely as there will be larger equipment loads in the hospital and some cooling will be needed in the winter. *Figure 6* shows the cooling tower consumption which can be seen to correlate with the cooling equipment consumption curves. Finally, *Figure 7* shows the overall HVAC monthly energy in kWh. It can be seen how the cooling dominates the summer and the heating dominates the winter months.

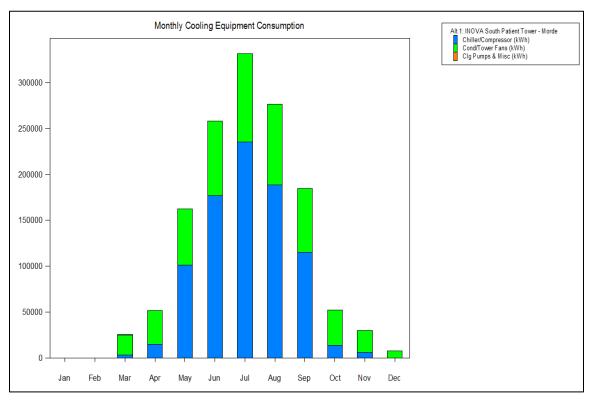


Figure 5: Monthly Cooling Equipment Consumption

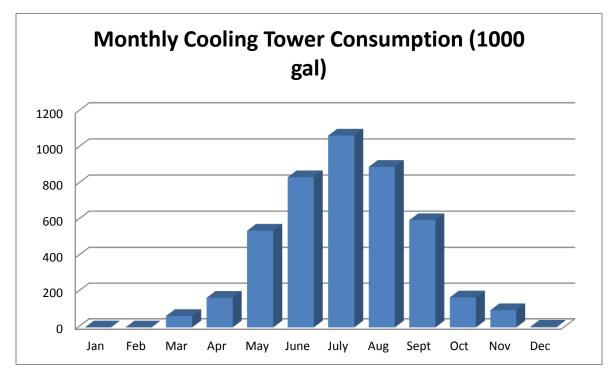


Figure 6: Monthly Cooling Tower Consumption

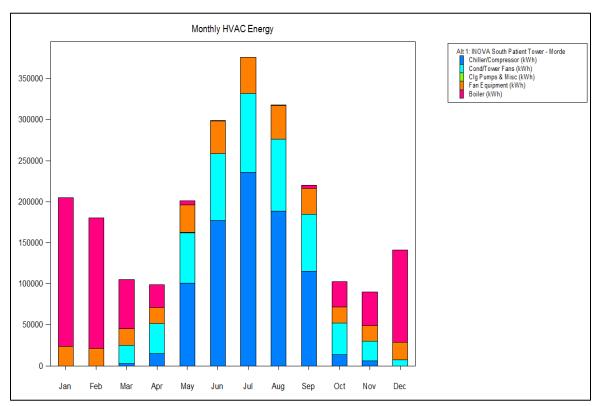


Figure 7: Monthly HVAC Energy

Emissions

The emissions for the South Patient Data were determined from the Regional Grid Emission Factors using the state of Virginia as reference for values. *Table 10* that follows shows the amount of total pollutants using the reference values of pound of pollutant per kWh of electricity. Although there is no on-site combustion in the building itself, the portion of the heating load from the central plant boilers was accounted for in this emissions report.

	Delivered E	nergy		On Site Combustion (Natural Gas)			
Pollutant	lb of Pollutant per kWh electricity	b of Pollutant per		Lb/yr	Total		
CO ₂	1.33E00	3,245,958	1.22E+02	259,213	3,505,171		
CH ₄	2.52E-03	6,150	2.50E-03	5.31	6,155		
N ₂ O	2.81E-05	68.6	2.50E-03	5.31	73.91		
NO _x	2.67E-03	6,516	1.11E-01	235.8	6,752		
SO _x	8.04E-03	19,622	6.32E-04	1.34	19,623		
СО	9.74E-04	2,377	9.33E-02	198	2,575		
TNMOC	8.77E-05	214	6.13E-03	13	227		
Lead	1.02E-07	0.249	5.00E-07	1.06E-03	0.25		
Mercury	3.24E-08	0.0791	2.60E-07	5.52E-04	0.08		
PM10	7.25E-05	176.9	8.40E-03	17.8	195		
Solid Waste	1.47E-01	358,764	-	-	358,764		

Table 10: Emission Factors for Virginia

Summary

After completing the analysis in Trane TRACE of the South Patient Tower, it was determined that the loads were well below the specifications in the designer's documentation. This can be attributed to the conservative estimates made to the internal miscellaneous loads, as the lighting, occupancy and ventilation rates were taken from the basis of design. If these loads were to be adjusted, a more accurate representation of the South Patient Tower loads may be found.

The energy analysis of the building as seemed to show some conservative estimates to the internal loads, which created some lower loads resulting in lower cost and emissions. If these loads were adjusted to reflect the internal loads more accurately, a better approximation to the energy consumption, costs, and emission could be made.

Appendix A: Detailed Weather Data

					WAS	HINGTO	N DC R	EAGAN	AP, VA	, USA				WMO#:	7240
Lat: 38.8	7N L	ong:	77.03W	Elev	66	StoP	14.66		Time Zone	: -5.00 (N	AE)	Period	82-06	WEAN:	1374
Annual Heating	and Humid	rieatio	n Design (Conditions											
Coldest	Heating DB				dification D	P/MCDB an		2			nth WS/MCC			POWD	8
Month	5% 99	6	DP	99.6% HR	MCDB	DP	99% HR	MCDB	WS	MCDB	WS 1	% MCDB	to 99. MCWS	6% DB PCWD	3
1 16	.3 20	3	-2.3	4.9	19.7	2.4	6.2	23.7	26.6	34.6	24.6	33.2	11.7	330	100
Annual Cooling	Dehumidi	ication	n, and Enth	alpy Desi	an Conditi	one									
Hottest Hot				Cooling D	B/MCWB		5		-	Evaporatio	on W8/MCD8		96		POWD
Month DB R		0.49	MCWB	08	MCWB	DB	MCWB	WB	4% MCDB	WB	MCDB	WB	MCDB	MCWS	PCW
7 16	.1 94		76.0	91.7	75.2	89.2	73.9	78.6	89.1	77.5	87.3	76.4	85.3	10.3	170
0.4	%		ehumidifica	1%	CDB and H	R	2%		0	.4%		%/MCD8	2	35	Hou 8 to 4
DP H	20.0 816	202	OP	HR	MCDB	DP	HR	MCDB	Enth	MCDB	Enth	MCDB	Enth	MCDB	55/6
76.0 136 Extreme Annual	241.00.000	a Carrow	74.8	130.8	82.2	73.7	125.8	81.2	42.1	89.5	40.9	87.7	39.8	85.4	721
					_										
Extreme A			Extreme Max		ean		deviation		years	0+1	eturn Period 0 years	n=20	years	n=50	years
1% 2.5 23.2 20	20	- 96	WB 84.9	Min 9.9	Max	6.9	Max 2.9	Min 4.9	Max 100.2	Min 0.9	Max 101.9	-3.0	Max 103.6	Min	Ma:
Z3.2 20 Monthly Climati				a.a	98.1	6.3	2.5		100.2	0.3	101.0	-3.0	103.6	-8.0	105
	210.51		Annual	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	Ta	_	58.2	36.3 9.67	39.4 8.51	46.7 9.11	56.6 8.10	65.9 7.25	74.8 6.01	79.7 4.76	78.0 5.00	70.8 6.71	59.4 7.49	49.7 8.27	40.
Temperature		_	1389	436	311	174	26	0	0	0	0	0	8	108	326
Degree-Day and	6 HDD CDD		4001 4390	891 10	717	571	272	78	6 745	921	1 869	24	207	463	20
Degree-Hour	000	65	1524	0	0	4	22	107	300	456	404	196	33	2	0
	CDH	_	13494 5085	0	1	39 8	206 54	883 281	2593 955	4585	3679	1324 393	174 28	10	0
	100		08	64.8	68.8	79.8	86.5	91.0	95.7	98.2	96.8	93.1	83.5	75.1	68.
Monthly Deci	0.4 gn	19	MCWB DB	57.6 59.4	56.4	63.3 71.1	66.9	73.2	75.8	76.8	77.1 93.1	74.9	70.2	63.6	60.
Dry Bulb and	29		MCWB	54.0	53.8	58.4	63.5	70.2	74.3	76.4	76.1	72.6	68.4	61.3	55.
Mean Colnoid Wet Bulb	ent 54		DB	53.6 47.7	56.6 48.3	65.9 55.3	74.8 61.3	83.0 69.3	88.6 73.6	92.3 75.6	90.2 74.9	84.3 71.3	74.9 65.7	66.0 59.4	57. 52.
Temperature	10		MCWB DB	48.8	51.9	61.0	70.3	79.0	85.6	89.5	87.4	81.3	71.3	62.5	52.
-			MCWB	43.2	45.6	51.7	58.9	66.9	72.3	74.7	73.7	70.1	63.4	56.4	47.
12010-00000000000	0,4	16	WB MCDB	60.1	60.1	64.7 76.2	69.4	76.1 87.0	78.9	80.5	80.1 91.1	77.9	73.3	66.8	62.
Monthly Deci Wet Bulb	on24		WB	54.9	54.5	60.5	66.4	73.1	77.2	79.1	78.3	75.9	70.7	63.8	57.
and Mean Coinoid	ent		MCDB WB	58.6 48.8	59.7 50.1	68.9 56.7	75.9 63.7	82.7 70.8	86.9	89.8 77.8	88.7	83.1 74.3	76.2 67.8	67.8	60. 53.
Dry Bulb Temperature	59		MCDB	52.3	55.0	63.4	71.9	79.8	84.9	87.9	86.6	80.7	73.2	64.8	56.
and a second	10	-	MCDB	44.0	46.4 51.2	53.2 59.8	60.7 68.5	68.7 77.0	74.6 82.6	76.6 85.8	76.0 83.9	72.7 78.6	65.2 69.9	57.4 61.0	48.
	1		MDBR	13.6	15.0	17.0	18.3	17.7	16.9	16.1	15.6	15.8	16.5	15.7	13.
Mean Daily Temperatur	5%	08	MCDBR MCWBR	20.4	22.4 15.4	24.4 14.5	25.0 12.7	22.7 10.5	20.0 8.2	19.4 7.1	18.6 7.4	18.8 7.8	19.7 11.0	20.1 13.7	19. 15.
Range	596		MCDBR	18.8	19.1	22.0	21.6	19.7	17.7	17.2	16.6	15.9	16.7	17.5	17.
8	- 10		MCWBR	16.2	15.2	14.9	12.3	10.5	8.1	7.5	7.2	8.0	10.7	14.4	15.
Clear Sky	12	tau tau		0.319	0.349	0.401 2.044	0.415 2.051	0.469	0.541	0.563	0.591	0.424 2.152	0.371 2.288	0.340 2.374	0.31
Solar Irradiance	<u>8</u> 2	Ebn,n	con	270	275	270	274	260	241	234	222	260	264	260	264
Lena marin		Edh,n		30	39	50	52	61	70	71	75	44	36	30	27
CDHn Cooli DB Dry b DP Dew (Ebn,noon) Cles Edh,noon) zont Elev Eleva Enth Entha HDDn Heati Hours 8/4 & 55/5	al Irradiance tion, ft Ipy, Btu/ib ng degree-d	ours ba ture, "F ature, " normal s at so ays bas iber of	sse n°F, °F- 'F I and diffusx Iar noon, B se n°F, °F-t hours betw	hour shori- tulhift2 Jay een 8 a.m.	MCWS MDBR	Mean coin Mean coin Mean coin Mean coin Mean coin Mean dry	cident dry b cident dry b cident dew cident wet b cident wet b cident wind builb temp. r coincident v	uib temp. ra point temper uib temp. n speed, mpi ange, "F	ange, 'F rature, 'F ature, 'F ange, 'F 1	Period Sd StdP taub taud Tavg Time Zon WB WBAN WMO# WS	Standard o Standard p Clear sky o Clear sky o Average to e Hours ahe Wet buils to Weather B	seviation of pressure at optical deption optical deption optic	dally averages station eleves In for beam i In for diffuse "F d UTC, and	irradiance irradiance time zone o ber	ure, "F

Appendix B: Trane TRACE Templates

Internal Load

Internal Load Templates - Project		— ×
Alternative Alternative 1 Description Active Storage	• •	Apply Close
People		
Type None	•	<u>N</u> ew
Density 0 sq ft/person 💌	Schedule People - Hospital	<u> </u>
Sensible 250 Btu/h	Latent 250 Btu/h	<u>D</u> elete
Workstations Density 0 workstation/person 🔻	1	Add <u>G</u> lobal
Lighting		
Type Recessed fluorescent, not vented		
Heat gain 0.9 W/sq ft 🗨	Schedule Lights - Hospital	
Miscellaneous loads		
Type None	•	
Energy 0 W/sq ft 🗨	Schedule Misc - Hospital	
Energy meter None 🗸]	
Internal Load		<u>R</u> oom

Internal Load	Template	es - Project					×
Alternative	Alterna	ative 1	•				Apply
Description	Cafe		•				
People							
Туре	Cafeteria					•	New
Density	10	sq ft/person 💌	Schedule	People - Ho	ospital	-	С <u>о</u> ру
Sensible	275	Btu/h	Latent	275 Bt	u/h		<u>D</u> elete
Workstations							Add <u>G</u> lobal
Density	0	workstation/person 💌					
Lighting							
Type	Pagana	d fluorescent, not vented, 8	1% load to or			T	
	·						
Heat gain	2.1	W/sq ft	Schedule	Lights - Hos	spital	-	
Miscellaneou	ıs loads						
Туре	None					-	
Energy	0	W/sq.ft 💌	Schedule	Misc - Hosp	pital	-	
Energy meter	None	•					
<u>I</u> nternal	Load	Airflow	<u>I</u> herm	ostat	<u>C</u> onstruction		<u>R</u> oom

Internal Load Templates - Project	— ×-
Alternative Alternative 1 Description Conference Room	Apply
People	
Type Conference Room 🔹	New
Density 20 sq ft/person 💌 Schedule People - Hospital 💌	Сору
Sensible 245 Btu/h Latent 155 Btu/h	<u>D</u> elete
Workstations	Add <u>G</u> lobal
Density 0 workstation/person 💌	
Lighting	
Type Recessed fluorescent, not vented, 80% load to space	
Heat gain 1.3 W/sq ft 💽 Schedule Lights - Hospital 💌	
Miscellaneous loads	
Type None 💌	
Energy 1 W/sq.ft 💌 Schedule Misc · Hospital 💌	
Energy meter None	
Internal Load Airflow Intermostat Construction	<u>R</u> oom

Internal Load	Templat	es - Project					×
Alternative Description	Altern			• •			Apply
People							
Туре	None					-	New
Density	0	sq ft/person	•	Schedule People - H	ospital	-	Сору
Sensible	250	Btu/h		Latent 250 B	tu/h		<u>D</u> elete
Workstations	s						Add <u>G</u> lobal
Density	0	workstation/person	•				
Lighting	-						
Туре	Recesse	d fluorescent, not ven	ted, 80			-	
Heat gain	1	W/sq.ft	•	Schedule Lights - Ho	ospital	-	
Miscellaneou	ıs loads						
Туре	None					-	
Energy	0	W/sq.ft	•	Schedule Misc - Hos	pital	-	
Energy meter	None		•				
<u>I</u> nternal	Load	Airflow		<u>T</u> hermostat	<u>C</u> onstruction]	<u>R</u> oom

Internal Load	Template	s - Project				×
Alternative Description	Alterna Exam F		•			Apply
Sensible Workstations.		People Btu/h workstation/person	Schedule People - H Latent 250 B	ospital tu/h	•	<u>N</u> ew C <u>opy</u> Delete Add <u>G</u> lobal
Туре	Recessed	d fluorescent, not vented, 80	1% load to space		•	
Heat gain	1.5	W/sq.ft 💽	Schedule Lights - Ho	spital	•	
Miscellaneou	s loads					
Туре	None				-	
Energy Energy meter	3 None	W/sq ft 💽	Schedule Misc - Hos	pital	•	
<u>I</u> nternal L	Load	Airflow	<u>T</u> hermostat	<u>C</u> onstruction		<u>R</u> oom

Internal Load	Template	es - Project					x
Alternative Description	Alterna		•				Apply Close
People	,						
Туре	None					-	New
Density	0	People	• Schedule	People - He	ospital	-	Сору
Sensible	250	Btu/h	Latent	250 Bt	:u/h		<u>D</u> elete
Workstations	s						Add <u>G</u> lobal
Density	0	workstation/person	·				
Lighting							
Туре	Recesse	d fluorescent, not ventec	l, 80% load to s	pace		-	
Heat gain	1.2	W/sq.ft	 Schedule 	Lights - Ho	spital	•	
Miscellaneou	ıs loads						
Туре	None					•	
Energy	5	W/sq.ft 🔹	- Schedule	Misc - Hos	pital	-	
Energy meter	None	•	·				
Internal	Load	Airflow	<u>I</u> herr	nostat	<u>C</u> onstruction		<u>R</u> oom

Internal Load	Template	es - Project				×
Alternative Description	Alterna		•			Apply
People						
Туре	None				-	New
Density	100	sq ft/person 💌	Schedule People -	Hospital	-	Сору
Sensible	250	Btu/h	Latent 250	Btu/h		<u>D</u> elete
Workstations Density	s IO	workstation/person 💌				Add <u>G</u> lobal
Lighting						
Туре	<u> </u>	d fluorescent, not vented, 80			-	
Heat gain	1.3	W/sq ft 💽	Schedule Lights - H	Hospital	-	
Miscellaneou	ıs loads					
Туре	None				-	
Energy	0	W/sq.ft 💌	Schedule Misc - Hi	ospital	-	
Energy meter	None	•				
<u>I</u> nternal	Load	Airflow	<u>T</u> hermostat	<u>C</u> onstruction]	<u>R</u> oom

Internal Load	Template	es - Project							—
Alternative Description	Alterna	ative 1 r Room		•					Apply
People									Nau
Туре	None							-	New
Density	6	People	-	Schedule	People	- Hospital		-	Сору
Sensible	250	Btu/h		Latent	250	Btu/h			<u>D</u> elete
Workstations	\$								Add <u>G</u> lobal
Density	0	workstation/person	•						
Lighting									
Туре	Recesse	ed fluorescent, not ven	ted, 80	% load to sp	ace			•	
Heat gain	0.6	W/sq.ft	•	Schedule	Lights -	Hospital		•	
Miscellaneou	ıs loads								
Туре	None							-	
Energy	0	W/sq.ft	-	Schedule	Misc - H	lospital		•	
Energy meter	None		•						
<u>I</u> nternal	Load	Airflow		<u>T</u> herm	ostat		Construction		<u>R</u> oom

Internal Load Tem	nplates - Project			—X —
	Alternative 1	•		Apply Close
People Type Nor Density 40 Sensible 250 Workstations Density 0	sq ft/person 💌 S	ichedule People - Hospital atent 250 Btu/h	•	<u>N</u> ew C <u>o</u> py Delete Add <u>G</u> lobal
Lighting				
Type Red	cessed fluorescent, not vented, 80% l	oad to space	•	
Heat gain 0.8	W/sq.ft 💌 S	ichedule Lights - Hospital	•	
Miscellaneous loa				
Type Nor	ne		<u> </u>	
Energy 350	• w • s	ichedule Misc - Hospital	•	
Energy meter Nor	ne 🔽			
Internal Load	d <u>A</u> irflow	<u>T</u> hermostat <u>(</u>	Construction	<u>R</u> oom

Internal Load	Template	es - Project						— ×
Alternative Description	Alterna Mech/			• •				Apply Close
People								New
Туре	None						•	
Density	0	sq ft/person	-	Schedule	People - H	ospital	•	Сору
Sensible	250	Btu/h		Latent	250 B	tu/h		<u>D</u> elete
Workstations	s							Add <u>G</u> lobal
Density	0	workstation/person	•					
Lighting								
Туре	<u> </u>	ent, hung below ceilin;	g, 100%					
Heat gain	1.5	W/sq ft	-	Schedule	Lights - Ho	spital	•	
Miscellaneou	ıs loads							
Туре	None						•	
Energy	1.5	W/sq ft	•	Schedule	Misc - Hos	pital	•	
Energy meter	None		•					
<u>I</u> nternal	Load	Airflow		<u>T</u> herm	iostat	<u>C</u> onstructi	on	<u>R</u> oom

Internal Load	Templat	tes - Project					-X -
Alternative Description		native 1 es Station	•				Apply
People							
Туре	None					-	New
Density	4	People 💌	Schedule	People - Ho	ospital	-	С <u>о</u> ру
Sensible	250	Btu/h	Latent	250 Bt	u/h		<u>D</u> elete
Workstations							Add <u>G</u> lobal
Density	0	workstation/person					
Lighting							
Туре	Recesse	ed fluorescent, not vented, 80)% load to sp	ace		-	
Heat gain	1	W/sq ft 🔹	Schedule	Lights - Ho:	spital	-	
Miscellaneou	us loads						
Туре	None					-	
Energy	700	W 💌	Schedule	Misc - Hosp	pital	-	
Energy meter	None	•					
<u>I</u> nternal	Load	Airflow	<u>T</u> herm	iostat	<u>C</u> onstruction		<u>R</u> oom

Internal Load	Templates - Project				—
Alternative Description	Alternative 1 Office	• •			Apply
People					
Туре	None			•	New
Density	200 sq ft/person 💌	Schedule People - Ho	ospital	-	С <u>о</u> ру
Sensible	250 Btu/h	Latent 250 Bt	tu/h		<u>D</u> elete
Workstations Density					Add <u>G</u> lobal
Lighting					
Туре	Recessed fluorescent, not vented, 803	% load to space		•	
Heat gain	1.1 W/sq.ft 💌	Schedule Lights - Ho	spital	-	
Miscellaneou	s loads				
Туре	None			•	
Energy	350 W 💌	Schedule Misc - Hosp	pital	-	
Energy meter	None				
<u>I</u> nternal	Load <u>A</u> irflow	<u>T</u> hermostat	<u>C</u> onstruction		<u>R</u> oom

Internal Load	Template	es - Project					- ×-
Alternative	Alterna		•				Apply
Description	Patien	t Room	-				<u>C</u> lose
People							New
Туре	None					-	
Density	100	sq ft/person 📃 💌	Schedule	People - Ho	ospital	-	<u>Copy</u>
Sensible	250	Btu/h	Latent	250 Bt	u/h		<u>D</u> elete
Workstations							Add <u>G</u> lobal
Density	0	workstation/person 💌					
Lighting							
Туре	Recesse	d fluorescent, not vented, 8	0% load to sp	ace		-	
Heat gain	0.7	W/sq ft 🗾 👻	Schedule	Lights - Hos	spital	•	
Miscellaneou	ıs loads						
Туре	None					-	
Energy	3	W/sq ft 🔹 💌	Schedule	Misc - Hosp	pital	•	
Energy meter	None	•					
<u>I</u> nternal	Load	Airflow	<u>I</u> herm	iostat	<u>C</u> onstruction]	Room

Internal Load	Template	es - Project						×
Alternative Description	Alterna			•				Apply
People								
Туре	None						-	. <u>N</u> ew
Density	0	People	-	Schedule	People - H	ospital	-	. С <u>о</u> ру
Sensible	0	Btu/h		Latent	0 B	tu/h		<u>D</u> elete
Workstations	3							Add <u>G</u> lobal
Density	0	workstation/person	•					
Lighting								
Туре	Recesse	d fluorescent, not ven	ted, 80	1% load to sp	ace		•	-]
Heat gain	0.9	W/sq.ft	•	Schedule	Lights - Ho	ospital	-]
Miscellaneou	ıs loads							
Туре	None						•	.]
Energy	0	W/sq.ft	-	Schedule	Misc - Hos	pital	-	
Energy meter	None		•					
<u>I</u> nternal	Load	Airflow		<u>I</u> herm	iostat	<u>C</u> onstruct	tion	<u>R</u> oom

Internal Load	Templat	es - Project					—X —
Alternative Description	Altern	native 1 ge	•				Apply
People							
Туре	None					-	New
Density	0	sq ft/person	Schedule	People - Ho	ospital	•	<u>Copy</u>
Sensible	250	Btu/h	Latent	250 Bt	u/h		<u>D</u> elete
Workstations	š						Add <u>G</u> lobal
Density	0	workstation/person					
Lighting							
Туре	Fluoresc	ent, hung below ceiling, 100	% load to spa	асе		-	
Heat gain	0.3	W/sq ft 🔹	Schedule	Lights - Hos	spital	•	
Miscellaneou	us loads						
Туре	None					-	
Energy	0	W/sq ft	Schedule	Misc - Hosp	pital	•	
Energy meter	None	•					
<u>I</u> nternal	Load	Airflow	<u>T</u> herm	nostat	<u>C</u> onstruction]	<u>R</u> oom

Internal Load	Template	es - Project					—
Alternative Description	Alterna Waitin		•				Apply
People							New
Туре	None					•	
Density	6	People 💌	Schedule	People - H	ospital	-	Copy
Sensible	250	Btu/h	Latent	250 B	tu/h		<u>D</u> elete
Workstations	s						Add <u>G</u> lobal
Density	0	workstation/person 💌					
Lighting							
Туре	Recesse	d fluorescent, not vented, 8	0% load to sp	ace		-	
Heat gain	1	W/sq ft 🔹	Schedule	Lights - Ho	ospital	•	
Miscellaneou	ıs loads						
Туре	None					-	
Energy	0	W/sq.ft 💌	Schedule	Misc - Hos	pital	-	
Energy meter	None	-					
<u>I</u> nternal	Load	Airflow	<u>I</u> herm	ostat	<u>C</u> onstruction]	<u>R</u> oom

Airflow

Airflow Templat	es - Proj	ect					— ———————————————————————————————————
Alternative Description	Alternati Cafe	ve 1	•				Apply Close
Main supply			Auxiliary su	oply			
Cooling Heating		To be calculated To be calculated	Cooling Heating		To be calculated	<u> </u>	<u>N</u> ew C <u>o</u> py
Ventilation		.1-2004/2007 Yes 🔻	Std 62.1-200			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	 Delete
Арріу Азнії. Туре		2.1-2004/2007 Yes 💌			supply, ceiling retu pply > trm+15°F(8°C •		Add <u>G</u> lobal
Peop-based	7.5	cfm/person 🗨	Er	Default bi	ased on system type	- 🗌 %	
Area-based	0.18	cfm/sq ft 🗨	DCV Mir	n OA Intak	ke None	•	
Schedule	Availabl	e (100%) 🔹 💌	Room exha	ust			
Infiltration			Rate	0	air changes/hr	-	
Туре	Neutral,	Average Const. 🛛 💌	Schedu	e Availa	ble (100%)	•	
Cooling	0.6	air changes/hr 🛛 💌	VAV minimu	m			
Heating	0.6	air changes/hr 🛛 💌	Rate		% Clg Airflow	•	
Schedule	Availabl	e (100%) 🔹 💌	Schedu	e Availai	ble (100%)	•	
			Туре	Defau	lt	T	
Internal Loa	d	<u>A</u> irflo w	<u>T</u> hermost	at	<u>C</u> onstruction		<u>R</u> oom

Airflow Template	es - Proje	ect						—X —
	Alternativ Conferen	ve 1 nce Room		•				Apply
Main supply				Auxiliary sup	ply			
Cooling		To be calculated	-	Cooling		To be calculated	-	New
Heating 🛛		To be calculated	•	Heating		To be calculated	•	С <u>о</u> ру
Ventilation				Std 62.1-2004	1/2007			Delete
Apply ASHRA	AE Std62.	1-2004/2007 Yes	•	Clg Ez 🛛	Ceiling clo	g supply, ceiling retu 💌	100 %	Add <u>G</u> lobal
Туре 🛛	Conferen	nce/ meeting	•	Htg Ez (Ceiling su	pply > trm+15°F(8°C 💌	80 %	
Peop-based 🛛	5	cfm/person	•	Er [)efault ba	ased on system type 💌] 🗌 %	
Area-based 🛛	0.06	cfm/sq ft	•	DCV Min	0A Intak	ke None	•	
Schedule	Available	; (100%)	•	Room exhau	ist			
Infiltration				Rate	0	air changes/hr	-	
Туре	Neutral, A	Average Const.	•	Schedule	Availat	ble (100%)	-	
Cooling	0.6	air changes/hr	•	VAV minimur	n			
Heating	0.6	air changes/hr	•	Rate		% Clg Airflow	•	
Schedule	Available	(100%)	•	Schedule	Availat	ble (100%)	•	
				Туре	Defaul	lt	•	
Internal Load	d	<u>A</u> irflo w		<u>T</u> hermosta	st	<u>C</u> onstruction		<u>R</u> oom

Airflow Templat	tes - Proj	ect				— X—
Alternative	Alternati	ve 1	•			Apply
Description	Corridor					
Main supply			Auxiliary supply			
Cooling		To be calculated 💌	Cooling	To be calculated 💌]	<u>N</u> ew
Heating		To be calculated 💌	Heating	To be calculated 💌]	Сору
Ventilation			Std 62.1-2004/2007			Delete
Apply ASHR	AE Std62	.1-2004/2007 No 💌	Clg Ez Custom	–	%	Add Global
Туре	None	-	Htg Ez Custom	-	%	
Cooling	2	air changes/hr 🛛 💌	Er Default b	based on system type	%	
Heating	2	air changes/hr 🛛 💌	DCV Min OA Inta	ke None	-	
Schedule	Available	e (100%) 🔹 💌	Room exhaust			
Infiltration			Rate 0	air changes/hr 🖉 💌]	
Туре	Neutral,	Average Const. 🛛 💌	Schedule Availa	able (100%) 📃 💌]	
Cooling	0.6	air changes/hr 🛛 💌	VAV minimum			
Heating	0.6	air changes/hr 🛛 💌	Rate	% Clg Airflow 💌]	
Schedule	Available	e (100%) 🔹 💌	Schedule Availa	able (100%) 📃 💌]	
			Type Defau	alt 💌]	
			T 1			
Internal Loa	b	<u>A</u> irflow	<u>T</u> hermostat	<u>Construction</u>	l	<u>R</u> oom

Airflow Templa	tes - Project				—
Alternative	Alternative 1	•			Apply
Description	Exam/Treatment	•		[<u>C</u> lose
Main supply		Auxiliary supply			
Cooling	To be calculated 💌	Cooling	To be calculated 💌		<u>N</u> ew
Heating	To be calculated 💌	Heating	To be calculated 💌		Сору
Ventilation		Std 62.1-2004/2007			<u>D</u> elete
Apply ASHR	AE Std62.1-2004/2007 No 💌	Clg Ez Custom		%	Add <u>G</u> lobal
Туре	None	Htg Ez Custom	-	% .	
Cooling	2 air changes/hr 💌	Er Default b	ased on system type 💌	%	
Heating	2 air changes/hr 💌	DCV Min OA Intal	ke None	~	
Schedule	Available (100%)	Room exhaust			
Infiltration		Rate 0	air changes/hr 💌		
Туре	Pressurized, Average Const. 💌	Schedule Availa	ble (100%) 🔹 💌		
Cooling	0.3 air changes/hr 💌	VAV minimum			
Heating	0.3 air changes/hr 💌	Rate	% Clg Airflow 💌		
Schedule	Available (100%)	Schedule Availa	ble (100%) 🗾 💌		
		Type Defau	lt 🔽		
Internal Loa	ad <u>A</u> irflo w	<u>T</u> hermostat	<u>C</u> onstruction		<u>R</u> oom

Airflow Templat	es - Proj	ect					×
Alternative	Alternati	ive 1	•				Apply
Description	Lobby		•				<u>Close</u>
Main supply			Auxiliary su	pply			
Cooling		To be calculated 💌	Cooling		To be calculated	•	New
Heating		To be calculated 💌	Heating		To be calculated	•	Сору
Ventilation			Std 62.1-200)4/2007			Delete
Apply ASHR/	AE Std62	2.1-2004/2007 Yes 💌	Clg Ez	Ceiling cl	g supply, ceiling retu	100 %	
Туре	Default	Std62 💌	Htg Ez	Ceiling su	ipply > trm+15°F(8°C	- 80 %	Add <u>G</u> lobal
Peop-based	5	cfm/person 💌	Er	Default b	ased on system type	- 🗌 %	
Area-based	0.06	cfm/sq.ft 🗨	DCV Mi	n OA Intal	ke None	•	
Schedule	Availabl	e (100%) 🔹	Room exha	iust			
Infiltration			Rate	0	air changes/hr	-	
Туре	Neutral,	Average Const. 📃 💌	Schedu	le Availa	ble (100%)	-	
Cooling	0.6	air changes/hr 🛛 💌	VAV minim	um			
Heating	0.6	air changes/hr 🛛 💌	Rate		% Clg Airflow	•	
Schedule	Available	e (100%) 🔹 💌	Schedu	le Availa	ble (100%)	•	
			Туре	Defau	lt	•	
Internal Loa	ıd	<u>A</u> irflo w	<u> </u>	tat	<u>Construction</u>		<u>R</u> oom

Airflow Templa	tes - Project			— ×
Alternative	Alternative 1	•		Apply
Description	Locker Room	•		<u>C</u> lose
Main supply		Auxiliary supply		
Cooling	To be calculated 💌	Cooling To be calculated	•	<u>N</u> ew
Heating	To be calculated 💌	Heating To be calculated	•	С <u>о</u> ру
Ventilation		Std 62.1-2004/2007		Delete
Apply ASHF	AE Std62.1-2004/2007 No 💌	Clg Ez Custom 🖃	%	Add <u>G</u> lobal
Туре	None	Htg Ez Custom	%	
Cooling	4 air changes/hr 👻	Er Default based on system type	%	
Heating	4 air changes/hr 💌	DCV Min OA Intake None	-	
Schedule	Available (100%)	Room exhaust		
Infiltration		Rate 0 air changes/hr	•	
Туре	Neutral, Average Const. 📃 💌	Schedule Available (100%)	•	
Cooling	0.6 air changes/hr 💌	VAV minimum		
Heating	0.6 air changes/hr 💌	Rate % Clg Airflow	•	
Schedule	Available (100%)	Schedule Available (100%)	•	
		Type Default	•	
	.	Thermoster		Darra
Internal Lo	ad <u>A</u> irflow	<u>I</u> hermostat <u>C</u> onstruction]	<u>R</u> oom

Airflow Templat	es - Proj	ect					—
Alternative	Alternati	ve 1	-				Apply
Description	Lounge		•				[]
Main supply			Auxiliary su	oply			
Cooling		To be calculated 💌	Cooling		To be calculated	•	New
Heating		To be calculated 🗨	Heating		To be calculated	•	Сору
Ventilation			Std 62.1-200	4/2007			Delete
Apply ASHR.	AE Std62	.1-2004/2007 Yes 💌	Clg Ez 🛛	Ceiling clg	; supply, ceiling retu	100 %	Add <u>G</u> lobal
Туре	Break R	ooms 💌	Htg Ez 🛛	Ceiling su	pply > trm+15°F(8°C	- 80 %	
Peop-based	5	cfm/person 🗨	Er	Default bi	ased on system type	- 🗌 %	
Area-based	0.06	cfm/sq ft 📃 👻	DCV Mi	n OA Intak	ke None	•	
Schedule	Available	e (100%) 🔹 💌	Room exha	ust			
Infiltration			Rate	0	air changes/hr	-	
Туре	Neutral,	Average Const. 📃 💌	Schedu	e Availa	ble (100%)	-	
Cooling	0.6	air changes/hr 🛛 💌	VAV minimu	im			
Heating	0.6	air changes/hr 🛛 💌	Rate		% Clg Airflow	•	
Schedule	Available	e (100%) 🔹	Schedu	e Availa	ble (100%)	•	
			Туре	Defau	t	•	
					-		
Internal Loa	id	<u>A</u> irflo w	<u>T</u> hermos	at	<u>C</u> onstruction		<u>R</u> oom

Airflow Templat	tes - Proj	ect						×
Alternative Description	Alternati Mech/El			•				Apply
Main supply Cooling Heating Ventilation Apply ASHR Type Peop-based Area-based Schedule Infiltration Type Cooling Heating	AE Std62 Electrica 0 0.06 Available Neutral, 0.6 0.6	To be calculated To be calculated 1-2004/2007 Yes Equipment Rooms ofm/sq ft (100%) Average Const. air changes/hr air changes/hr		Auxiliary sup Cooling Heating Std 62.1-200 Clg Ez [Htg Ez [Er [DCV Mir Room exhar Rate Schedul VAV minimu Rate	4/2007 Ceiling cl Ceiling su Default b OA Intal st 0 e Availa m	g supply, ceiling retu upply > trm+15°F(8°C ased on system type ke None air changes/hr ble (100%) % Clg Airflow	• 80 % • % • %	<u>N</u> ew C <u>o</u> py <u>D</u> elete Add <u>G</u> lobal
Schedule	Available	e (100%)	-	Schedul Type	Defau	ble (100%) It	• •	
<u>I</u> nternal Loa	ad _	<u>A</u> irflo w		<u>T</u> hermost	at	<u>C</u> onstruction		<u>R</u> oom

Airflow Templat	tes - Proj	ject				— ×
Alternative Description	Alternat		•			Apply
Main supply Cooling		To be calculated	Auxiliary supply Cooling	To be calculated 💌]	New
Heating		To be calculated 💌	Heating	To be calculated 💌]	Сору
Ventilation			Std 62.1-2004/2007			<u>D</u> elete
Apply ASHR	AE Std62	2.1-2004/2007 No 💌	Clg Ez Custon	n 🗾	%	Add <u>G</u> lobal
Туре	None	-	Htg Ez Custon	1 -	%	
Cooling	2	air changes/hr 🛛 👻	Er Defaul	t based on system type 💌	%	
Heating	2	air changes/hr 🛛 👻	DCV Min OA In	itake None	-	
Schedule	Availabl	le (100%) 🔹 💌	Room exhaust		_	
Infiltration			Rate 0	air changes/hr 💌]	
Туре	Neutral,	Average Const. 🛛 💌	Schedule Ava	ailable (100%) 📃 💌]	
Cooling	0.6	air changes/hr 🛛 💌	VAV minimum			
Heating	0.6	air changes/hr 🛛 💌	Rate	% Clg Airflow 💌]	
Schedule	Availabl	e (100%) 🔹 💌	Schedule Ava	ailable (100%) 📃 💌]	
			Type Def	ault 💌]	
Internal Loa	ad _	<u>A</u> irflo w	<u>I</u> hermostat	Construction		<u>R</u> oom

Airflow Templat	tes - Project		×
Alternative	Alternative 1	•	Apply
Description	Office	•	[lose]
Main supply		Auxiliary supply	
Cooling	To be calculated 💌	Cooling To be calculated 💌	New
Heating	To be calculated 💌	Heating To be calculated 💌	Сору
Ventilation		Std 62.1-2004/2007	Delete
Apply ASHR	AE Std62.1-2004/2007 Yes 💌	Clg Ez Ceiling clg supply, ceiling retu 💌 100	% Add <u>G</u> lobal
Туре	Office space 🗨	Htg Ez Ceiling supply > trm+15°F(8°C ✔ 80	% <u>Add <u>a</u>lobal</u>
Peop-based	5 cfm/person 💌	Er Default based on system type	%
Area-based	0.06 cfm/sq ft 🗨	DCV Min OA Intake None	•
Schedule	Available (100%)	Room exhaust	
Infiltration		Rate 0 air changes/hr 💌	
Туре	Neutral, Average Const. 📃 💌	Schedule Available (100%) 💌	
Cooling	0.6 air changes/hr 💌	VAV minimum	
Heating	0.6 air changes/hr 💌	Rate 🛛 🛛 🕅 🗶 Clg Airflow 💽	
Schedule	Available (100%)	Schedule Available (100%)	
		Type Default 💌	
Internal Loa	ad <u>A</u> irflow	<u>I</u> hermostat <u>C</u> onstruction	<u>R</u> oom

Airflow Templat	tes - Proj	ject				—
Alternative	Alternat	ive 1	•			Apply
Description	Patient	Room	•		[<u>Close</u>
Main supply			Auxiliary supply		-	
Cooling		To be calculated 💌	Cooling	To be calculated 💌		<u>N</u> ew
Heating		To be calculated 💌	Heating	To be calculated 💌]	Сору
Ventilation			Std 62.1-2004/2007			Delete
Apply ASHR.	AE Std62	2.1-2004/2007 Yes 💌	Clg Ez Ceiling cl	lg supply, ceiling retu 💌 1	00 %	Add <u>G</u> lobal
Туре	Default	Std62 💌	Htg Ez Ceiling st	upply > trm+15°F(8°C 💌 8	0 % -	
Peop-based	25	cfm/person 🗨	Er Default b	oased on system type 💌	%	
Area-based	0.25	cfm/sq ft 🗨	DCV Min OA Inta	ike None	•	
Schedule	Availabl	e (100%) 🔹 🔻	Room exhaust			
Infiltration			Rate 0	air changes/hr 💌]	
Туре	Pressuri	zed, Average Const. 💌	Schedule Availa	able (100%) 🛛 💌]	
Cooling	0.3	air changes/hr 💽	VAV minimum			
Heating	0.3	air changes/hr 🛛 💌	Rate	% Clg Airflow 💌]	
Schedule	Availabl	e (100%) 🔹 💌	Schedule Availa	able (100%) 📃 💌]	
			Type Defau	alt 💌]	
Internal Loa	ad	Airflow	Thermostat	Construction		Room
Turcental Foc		Annow	Themostar			<u></u>

tes - Project	×.
Alternative 1	▼
Storage	▼ <u>C</u> lose
	Auxiliary supply
To be calculated	Cooling To be calculated 💌 <u>N</u> ew
To be calculated	Heating To be calculated Copy
	Std 62.1-2004/2007 Delete
AE Std62.1-2004/2007 Yes 💌	Clg Ez Ceiling clg supply, ceiling retu 👻 100 %
Storage rooms	Htg Ez Ceiling supply > trm+15°F(8°C 80 % Add <u>G</u> lobal
0 cfm/person 🗣	Er Default based on system type 💌 🕺
0.12 cfm/sq ft	DCV Min OA Intake None 💌
Available (100%)	Room exhaust
	Rate 0 air changes/hr 💌
Neutral, Average Const. 🛛 💌	Schedule Available (100%)
0.6 air changes/hr 💌	VAV minimum
0.6 air changes/hr 💌	Rate 🛛 🛛 🕆 Clg Airflow 💌
Available (100%) 🔹	Schedule Available (100%)
	Type Default 💌
ad Airflow	Thermostat Construction Room
	Storage To be calculated To be calculated To be calculated AE Std62.1-2004/2007 Yes Storage rooms 0 cfm/person 0.12 cfm/sq ft Available (100%) Neutral, Average Const. 0.6 air changes/hr

Airflow Templat	es - Proj	ect					— ×
Alternative	Alternativ	ve 1	•				Apply
Description	Waiting						<u>Close</u>
Main supply	,		Auxiliary su	pply			
Cooling		To be calculated 💌	Cooling		To be calculated	•	New
Heating		To be calculated 💌	Heating		To be calculated	•	Сору
Ventilation			Std 62.1-200)4/2007			<u>D</u> elete
Apply ASHR/	AE Std62.	.1-2004/2007 Yes 👻	Clg Ez	Ceiling clg	supply, ceiling retu	▼ 100 %	Add <u>G</u> lobal
Туре	Corridors	s 🔹	Htg Ez	Ceiling sup	oply > trm+15°F(8°C	▼ 80 %	
Peop-based	0	cfm/person 💌	Er	Default ba	ised on system type	- 🗌 %	
Area-based	0.8	cfm/sq ft 🛛 👻	DCV Mi	n OA Intak	e None	•	
Schedule	Available	e (100%) 🔹 💌	Room exha	iust			
Infiltration			Rate	0	air changes/hr	•	
Туре	Neutral, /	Average Const. 🛛 💌	Schedu	le Availab	le (100%)	•	
Cooling	0.6	air changes/hr 🛛 💌	VAV minimu	um			
Heating	0.6	air changes/hr 🛛 💌	Rate		% Clg Airflow	-	
Schedule	Available	e (100%) 🔹 💌	Schedu	le Availab	ole (100%)	•	
			Туре	Default		•	
Internal Loa	ıd	<u>A</u> irflo w	<u>I</u> hermos	tat	<u>C</u> onstruction		<u>R</u> oom